If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+32x-1=0
a = 8; b = 32; c = -1;
Δ = b2-4ac
Δ = 322-4·8·(-1)
Δ = 1056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1056}=\sqrt{16*66}=\sqrt{16}*\sqrt{66}=4\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{66}}{2*8}=\frac{-32-4\sqrt{66}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{66}}{2*8}=\frac{-32+4\sqrt{66}}{16} $
| 104(x+3)+3(x+6)=7 | | x=4+1/5 | | -50x=210 | | 6(4x-1)+7(5x+2)=53 | | 66(4x-1)+7(5x+2)=53 | | X+100/25=x/15 | | p=2p+2p+2+2p=-4 | | 1616(3x-5)-10(4x-8)=40 | | 5(x-1)+(21x+3)+6=0 | | x=39/13 | | 4x+6=10x+5 | | 9=m+3m | | 2x+16=79 | | p/5p+7-4p=-21 | | p/2p+3p+2+p=-4 | | 6x+2=5+2x | | 4(2x-5)=x-5(8x+3) | | 30+4x=x-6 | | 3(800+x)=3600 | | ....x100=99 | | 8-13q=3q | | (4x-2)^2=0 | | 16x+3=6x+23 | | x+.06x=58.92 | | (8^n-1)/(4^n+2^n+1)=127 | | X^2-4x+3=2x-2 | | 9x+6x=360 | | 5x=4.44 | | 4-7x=6x+27 | | n3-n-1000=0 | | -7(k-8)-(-8k+2)=7 | | 5=20-t |